skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dawson, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Observational studies of Hiiregion–molecular cloud interactions constrain models of feedback and quantify its impact on the surrounding environment. A recent hypothesis proposes that a characteristic spectral signature in ground state hyperfine lines of hydroxyl (OH)—the OH flip—may trace gas that is dynamically interacting with an expanding Hiiregion, offering a new means of probing such interactions. We explore this hypothesis using dedicated Jansky Very Large Array observations of three Galactic Hiiregions, G049.205−0.343, G034.256+0.145, and G024.471+0.492, in 1–2 GHz continuum emission, all four 18 cm ground-state OH lines, and multiple hydrogen radio recombination lines. A Gaussian decomposition of the molecular gas data reveals complex OH emission and absorption across our targets. We detect the OH flip toward two of our sources, G049.205−0.343 and G034.256+0.145, finding agreement between key predictions of the flip hypothesis and the observed multiwavelength spectra, kinematics, and morphology. Specifically, we demonstrate a strong spatial and kinematic association between the OH flip and the ionized gas of the Hiiregions—the first time this has been demonstrated for resolved sources—and evidence from13CO(1–0) data that the expected OH component originates from the nondisturbed gas of the parent cloud. While we detect no flip in G024.471+0.492, we do find evidence of interacting molecular gas traced by OH, providing further support for OH’s ability to trace Hiiregion–molecular cloud interactions. 
    more » « less
    Free, publicly-accessible full text available December 22, 2026
  2. Abstract We investigate the conditions for the Hi-to-H2transition in the solar neighborhood by analyzing Hiemission and absorption measurements toward 58 Galactic lines of sight (LOSs) along with12CO(1–0) (CO) and dust data. Based on the accurate column densities of the cold and warm neutral medium (CNM and WNM), we first perform a decomposition of gas into atomic and molecular phases, and show that the observed LOSs are mostly Hi-dominated. In addition, we find that the CO-dark H2, not the optically thick Hi, is a major ingredient of the dark gas in the solar neighborhood. To examine the conditions for the formation of CO-bright molecular gas, we analyze the kinematic association between Hiand CO, and find that the CNM is kinematically more closely associated with CO than the WNM. When CNM components within CO line widths are isolated, we find the following characteristics: spin temperature < 200 K, peak optical depth > 0.1, CNM fraction of ∼0.6, andV-band dust extinction > 0.5 mag. These results suggest that CO-bright molecular gas preferentially forms in environments with high column densities where the CNM becomes colder and more abundant. Finally, we confront the observed CNM properties with the steady-state H2formation model of Sternberg et al. and infer that the CNM must be clumpy with a small volume filling factor. Another possibility would be that missing processes in the model, such as cosmic-rays and gas dynamics, play an important role in the Hi-to-H2transition. 
    more » « less
  3. The Magellanic Stream (MS), a tail of diffuse gas formed from tidal and ram pressure interactions between the Small and Large Magellanic Clouds (SMC and LMC) and the Halo of the Milky Way, is primarily composed of neutral atomic hydrogen (HI). The deficiency of dust and the diffuse nature of the present gas make molecular formation rare and difficult, but if present, could lead to regions potentially suitable for star formation, thereby allowing us to probe conditions of star formation similar to those at high redshifts. We search for HCO+ ,HCN,HNC,andC2H using the highest sensitivity observations of molecular absorption data from the Atacama Large Millimeter Array (ALMA) to trace these regions, comparing with HI archival data from the Galactic Arecibo L-Band Feed Array (GALFA) HI Survey and the Galactic All Sky Survey (GASS) to compare these environments in the MS to the HI column density threshold for molecular formation in the Milky Way. We also compare the line of sight locations with confirmed locations of stars, molecular hydrogen, and OI detections, though at higher sensitivities than the observations presented here. 
    more » « less
  4. Abstract We investigate the kinematic properties of Galactic H ii regions using radio recombination line (RRL) emission detected by the Australia Telescope Compact Array at 4–10 GHz and the Jansky Very Large Array at 8–10 GHz. Our H ii region sample consists of 425 independent observations of 374 nebulae that are relatively well isolated from other, potentially confusing sources and have a single RRL component with a high signal-to-noise ratio. We perform Gaussian fits to the RRL emission in position-position–velocity data cubes and discover velocity gradients in 178 (42%) of the nebulae with magnitudes between 5 and 200 m s − 1 arcsec − 1 . About 15% of the sources also have an RRL width spatial distribution that peaks toward the center of the nebula. The velocity gradient position angles appear to be random on the sky with no favored orientation with respect to the Galactic plane. We craft H ii region simulations that include bipolar outflows or solid body rotational motions to explain the observed velocity gradients. The simulations favor solid body rotation since, unlike the bipolar outflow kinematic models, they are able to produce both the large, >40 m s − 1 arcsec − 1 , velocity gradients and also the RRL width structure that we observe in some sources. The bipolar outflow model, however, cannot be ruled out as a possible explanation for the observed velocity gradients for many sources in our sample. We nevertheless suggest that most H ii region complexes are rotating and may have inherited angular momentum from their parent molecular clouds. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. Abstract Using the Australian Square Kilometre Array Pathfinder to measure 21 cm absorption spectra toward continuum background sources, we study the cool phase of the neutral atomic gas in the far outer disk, and in the inner Galaxy near the end of the Galactic bar at longitude 340°. In the inner Galaxy, the cool atomic gas has a smaller scale height than in the solar neighborhood, similar to the molecular gas and the super-thin stellar population in the bar. In the outer Galaxy, the cool atomic gas is mixed with the warm, neutral medium, with the cool fraction staying roughly constant with the Galactic radius. The ratio of the emission brightness temperature to the absorption, i.e., 1 − e − τ , is roughly constant for velocities corresponding to Galactic radius greater than about twice the solar circle radius. The ratio has a value of about 300 K, but this does not correspond to a physical temperature in the gas. If the gas causing the absorption has kinetic temperature of about 100 K, as in the solar neighborhood, then the value 300 K indicates that the fraction of the gas mass in this phase is one-third of the total H i mass. 
    more » « less